Radio Controlled Models
Share RCScrapyard on Facebook
RCScrapyard Radio Controlled Models
Flags
RCScrapyard.net contains Google and Amazon Affiliate links, which may earn us commission. See our Disclosure page for more info.
bar

Tamiya XB Mitsubishi Racing Lancer - # 57797 (Radio Controlled Model Review)

1/10 Scale Electric Rally Car - DF-01 Chassis:


  Released by Tamiya on October 31, 2009, the 4WD XB Mitsubishi Racing Lancer (Repsol Ralliart)(#57797) is No.97 in the RTR Pre-Assembled Expert Built Series, based on the DF-01 chassis. The Tamiya Mitsubishi Racing Lancer kit (#58421) was introduced in September 2009. The real Mitsubishi Racing Lancer was developed for the 2009 Dakar Rally.

  LED lights, a pre-painted lexan bodyshell, a 540 motor and radio system are included, but may require a battery, charger and speed controller to complete (specifications differ from country to country).

Tamiya XB Mitsubishi Racing Lancer - DF-01 # 57797

▼ Scroll Down for More Images ▼



  The model is shaft driven, on a molded plastic chassis, with gear type differentials, coil spring over oil filled dampers, dogbone drive-shafts and bushings.

  Plastic and sintered brass bush type bearings are supplied with this model, that after a short while, when dust and grit get into them, actually wear into the metal drive shafts that spin in them - our recommendation is that these should be discarded and replaced by a full set of steel shielded ball bearings ASAP.

  To get the best from the Tamiya XB Mitsubishi Racing Lancer, it needs to be fine tuned to handle jumps under control and has enough grip to hug the corners at high speed, without slipping off the track. Small adjustments can make a Big difference and our simple to understand, step by step procedure, will guide you to the best Set-up for your driving style.


Rating: 44 Stars out of 5 RCScrapyard



Gas/Nitro Engines Body Shells Radio Transmitters etc Tires Wheels/Rims Electronic Speed Controllers Battery Packs / Chargers Electric Motors




















Flags


Tamiya XB Mitsubishi Racing Lancer - DF-01 Chassis
Tamiya Mitsubishi Racing Lancer DF-01 Chassis
Tamiya XB Mitsubishi Racing Lancer - DF-01 Chassis
Tamiya Mitsubishi Racing Lancer DF-01 Chassis
Tamiya XB Mitsubishi Racing Lancer - DF-01 Chassis
Tamiya Mitsubishi Racing Lancer DF-01 Chassis
Tamiya XB Mitsubishi Racing Lancer - DF-01 Chassis
Tamiya Mitsubishi Racing Lancer DF-01 Chassis
Tamiya XB Mitsubishi Racing Lancer - DF-01 Chassis
Tamiya Mitsubishi Racing Lancer DF-01 Chassis

Buying a Used Tamiya Mitsubishi Racing Lancer
Rally Car (and What to look for)


   There are essentially three reasons you might want to buy a used Tamiya Mitsubishi Racing Lancer Electric Rally Car; you may be a collector, looking to restore and display it; restore and sell for a profit; or simply restore and race an iconic vintage model. Personally, I used to get a buzz out of restoring an old clapped-out model, installing modern day electrics and maybe a few hop-ups, then showing the gang at our local club, just how competitive those old models could still be.

   Cheap, pre-loved bargain models, parts and spares are always coming up for sale, but once you have made your purchase, the one thing you will always need, is an instruction manual. If not supplied with your purchase, they can often be downloaded from the Tamiya website, or purchased separately on eBay. With an instruction manual, any problems with your model Rally Car you may discover, can easily be fixed.

Make a General Visual Inspection

Dampers
   When you receive your used Tamiya Rally Car, make a general visual inspection of the chassis, front and rear wishbones, suspension shock towers etc, for any broken parts that may need to be replaced. Then, take a screwdriver and box spanner and check each self tapping screw and nut for security, taking care not to over tighten.

   Next, for those Tamiya models with oil filled shock absorbers, remove them from the chassis and dismantle the coil springs. The damper shafts should push in and pull out with a smooth action. If you feel a jolt as you change direction, this means the oil has leaked out and must be topped up. At the same time, change the O-Ring seals to prevent more leakage. Also check the damper shafts for damage. If they are scratched, change them as soon as possible.

Check the Body-Shell

   If the body shell of your Tamiya Mitsubishi Racing Lancer is broken, ripped or damaged in any way, this can be easily repaired with rubber solution glue. Also, for added protection and if available for your Mitsubishi Racing Lancer model, fit an under guard to stop dirt and gravel entering the chassis.

Drive Shafts and Turnbuckles

Titanium Turnbuckles
   Examine the drive shafts for wear and replace as required. If possible, change them for titanium. The steel shafts wear and bend too easily.

   If you intend to race your Mitsubishi Racing Lancer Rally Car model at a competitive level, I would also recommend you obtain and fit titanium pivot shafts, turnbuckles, tie rods and steering rods.

Examine the Drive System

   On Belt driven models, the Drive Belts need checking at regular intervals for wear, tension and damage. If deemed necessary, adjust the tensioning pulley until the belt can be depressed in the centre by no more than around 5mm. If the belt was slack, also examine the drive pulleys for wear. The teeth should provide a well seated fit for the belt teeth and not be rounded on the corners. If the belt teeth do not fit snugly, change the pulleys as soon as possible. For top level racing it may be prudent to replace all belts and pulleys after each race meeting.

   For Gear driven models, the gearbox of your used Rally Car should be opened up to check for gear wear and lubrication. A thin coat of grease is often used on internal gears and although this is fine for basic running around on the back yard, if you intend to race your Rally Car at a higher level, this should be removed and replaced with racing oil (ZX1 or Teflon Oil). Of course, this should be reapplied after each race meeting.

Pinions and Spur Gears

Spur Gears
   Gears are a weakness on all Rally Car RC models. Head on collisions can easily damage the gear teeth on nylon and plastic spur gears. Heavy impacts can also loosen the nuts or self tapping screws that hold the Electric motor in Position, allowing the pinion gear to pull out of mesh slightly and rip the tops off the teeth on your spur gear. To minimise this possibility, fit bolts with locking nuts to the Electric motor mount and remember to check them for security after every two or three runs.

Don't Neglect the Ball-Joints

   Ball joints always cause problems. For top level Electric Rally Car racing, the plastic ball connectors should be checked and if deemed necessary, changed after every meeting. A simple thing like a loose fitting connector popping off, could easily end your race, so better safe than sorry.

Steering Servo and Servo-Saver

Servo Gears
   The Mitsubishi Racing Lancer steering servo is also prone to damage. In high speed crash situations, the fragile gear teeth of the servo can be broken off, rendering your expensive servo useless, so be sure to obtain a good quality "Servo Saver". Check out my Servo Information article.

Stabilizers

   If body roll on your Tamiya Mitsubishi Racing Lancer is a problem, handling can be improved with the use of stabilizers, anti roll or sway bars, stiffer tuning springs and, or, thicker silicone oil in the dampers.

Don't Forget those Bearings

Ball Bearings
   If your used Tamiya Rally Car comes with plastic and sintered brass bushings (ring type bearings), check the shafts that run in them for wear. Dust and grit can get into these bearings and abrade the shafts. Therefore, you should replace them all with shielded ball bearings. If the model has been run with ring type bearings, you may have to change all the axles and driveshafts. For more information, take a look at my article, How to get the best from your Bearings.

   Finally, good luck with your Mitsubishi Racing Lancer model and good racing.

▼ Scroll Down for More Articles and Advice ▼

Or, check out our RC Model Car Setup Guide



















Tamiya Buggys Tamiya Trucks Tamiya Monster Trucks Tamiya Rock Crawlers Tamiya Off Road Chassis Types Tamiya Touring Car Tamiya Drift Car Tamiya WRC Car Tamiya M Chassis
Tamiya Tractor Trucks Tamiya Touring Car Chassis Tamiya F1 Tamiya F1/Le Mans Chassis Types Tamiya Military Tamiya Tanks


















Hints, Tips and Information

Emergency Plastic Part Repairs

   It always happens when you least expect it. You are racing hard; and suddenly some idiot decides to side swipe you' and break your front wishbone. Even though you may carry spare parts for just about everything on your car, it always seems to be the same part that breaks, and although you made a mental note the last time it happened to get a replacement you soon realise those mental notes were not worth the paper they are written on.

   So there you are, in the middle of nowhere with no spares. You ask around and no one has anything like your car, least of all parts for it, and the closest model shop is 100 miles away. What are you supposed to do now?

   Some kind of repair is your only option.

   The one thing quite a few people think of first is superglue, but that kind of repair won't even get you around the first corner.

Read the Complete Article  ▶ ▶






Information and Advice

Electronic Speed Controllers

History

   ESC were originally developed to be used in conjunction with brushed 27T stock and modified motors in the late 1970s, early 1980s. Compared to modern day Controllers, they were Bulky and heavy, constructed using basic resistors, rheostats, capacitors and transistors, crammed together on a simple circuit board, to provide stepped but smooth acceleration when compared to the old mechanical, servo operated sweeper Speed Controllers. An Electronic Switch to change the direction of current flow was used on some of these early ESC to give reverse operation. Although they were a vast improvement on the old mechanical speedos of the time, they were expensive, jerky to control, and prone to burn out if not carefully looked after.

   As new technology became available, improvements were slowly made, and with the introduction of the new FET (Field Effect Transistors) and some basic mass produced silicon chips, ESC were made smaller and their reliability gradually improved.

   By the mid 1990s, "regenerative breaking" was developed. This meant that energy that would have been lost slowing down the car by effectively turning the motor into a generator, was harvested and put back into the battery. This of course was long before F1 had KERS (Kinetic Energy Recovery System) and adjustable anti lock breaking was introduced.

Read the Complete Article  ▶ ▶







^ TOP ^

RC Models:
Radio
& Motors:
Other
Accessories: